It’s a trap!: Modern and ancient halite as Lagerstätten
Journal of Sedimentary Research, ISSN: 1527-1404, Vol: 93, Issue: 9, Page: 642-655
2023
- 3Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Chemical sediments, such as bedded halite (NaCl), are strongly influenced by environmental conditions during deposition and, if unaltered, may preserve microorganisms, microfossils, and organic compounds for hundreds of millions of years. Recent studies show that halite is an excellent repository for organic materials, as well as a variety of environmental data. Halite is a perfect trap. Due to its rapid growth, parent brine, gas, crystals of other minerals, and any organic material are encased within primary fluid inclusions or as solid inclusions along growth bands. These inclusions function as “snapshot” repositories of the hydrosphere, atmosphere, lithosphere, and biosphere. However, organic material in halite is still relatively unknown in the sedimentological and paleontological communities. Here, we present highlights of preservation in halite to showcase the diversity of life that has been documented within it. We also discuss: 1) the properties of halite that give it such excellent preservation potential, 2) the challenges to and strategies for studying organic material in halite, 3) preservation in other salt minerals such as gypsum, and 4) implications for astrobiological research. Recommendations for the future study of organic material in halite include collaboration amongst chemical sedimentologists, paleontologists, and microbiologists.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know