An adaptive maximum power output sustaining system for a photovoltaic power plant based on a robust predictive control approach
Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, ISSN: 2414-0341, Vol: 63, Issue: 5, Page: 441-449
2020
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
Photovoltaic power plants have non-linear voltage-current characteristic, with specific maximum power point, which depends on operating conditions, viz. irradiation and temperature. In targeting the maximum power, it is by far known that the photovoltaic arrays have to operate at the maximum power point despite unpredicted weather changes. For this reason the controllers of all photovoltaic power electronic converters employ some method for maximum power point tracking. This paper makes an emphasis on model predictive controller as a control method for controlling the maximum power point tracking through the utilization of the well-known algorithm namely the Perturb and Observe technique. Further, during the advanced stages of this research study, the model will compare the results obtained for tracking the maximum power point from model predictive controller and a PID-controller as they are integrated Perturb and Observe algorithm. The obtained results will verify that the adaptive PID-controller Perturb and Observe algorithm has limitation for tracking the precise MPP during the transient insulation conditions. As compared to the proposed adaptive/modified model predictive controller for Perturb and Observe algorithm we illustrate that by adopting this method we will get to establish more accurate and efficient results of the obtained power in any dynamic environmental conditions: Advantages as on regulation time (six times under the accepted experimental conditions) and by the number of fluctuations.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85096169884&origin=inward; http://dx.doi.org/10.21122/1029-7448-2020-63-5-441-449; https://energy.bntu.by/jour/article/view/1995; https://energy.bntu.by/jour/article/viewFile/1995/1743; https://dx.doi.org/10.21122/1029-7448-2020-63-5-441-449
Belarusian National Technical University
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know