Visual Detection of Selenium(IV) Using a Gallium(III) Complex Retained in a Support Filter
Bunseki Kagaku, ISSN: 0525-1931, Vol: 71, Issue: 1.2, Page: 77-82
2022
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A sensing membrane for selenium(IV) was fabricated by retaining tris(2,4-pentanedionato) gallium(III) (Ga(acac)) in a glass-fiber filter. From a sample solution containing selenium(IV), gaseous hydrogen selenide was generated by reducing-vaporization and was passed through the membrane while turning the color to reddish pink. The color difference (ΔE*(ab)) before and after the reaction was measured by a reflection spectrometer. The ΔE*(ab) value increased with the increase of the selenium(IV) concentration. From the reflective spectra of reacted membranes; gallium(III) selenide (GaSe) was suggested to be formed. Most of the coexisting cations showed no significant interference to the reaction, besides a large amount of arsenic(V) and antimony(III) suppressed the color change. Since adding iron(II) salt resulted in enhancing the color difference, 10 mg dm of iron(II) was used as an accelerating additive. In order to investigate the influence of ligands in gallium(III) complexes, several gallium(III) compounds were retained in a filter, and examined as sensing materials. The complexes of β-diketones and dithiocarbamates had appropriate sensing activity, while inorganic salts, like gallium(III) sulfate or nitrate, showed no color change. This suggests that ligands having larger pKa values are effective for the reaction. The complexes of monobasic, dibasic and tribasic carboxylic acids showed decreased color differences in this order, and those of multidentate ligands, e.g., EDTA, exhibited no color change. These results showed excessively stable gallium(III) complexes have no reactivity to hydrogen selenide. Visual detection of 0.01 mg dm selenium(IV) was achieved in the presence of 10 mg dm iron(II) in a 50 cm sample solution.
Bibliographic Details
Japan Society for Analytical Chemistry
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know