Effect of wettability alteration on productivity enhancement in unconventional gas reservoirs: Application of nanotechnology
Society of Petroleum Engineers - SPE Asia Pacific Unconventional Resources Conference and Exhibition
2015
- 9Citations
- 18Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In unconventional water-wet gas reservoirs with very low permeability, water entrapment or blockage can occur near the wellbore due to the capillary end effect, resulting in low gas production. A reduction in capillary forces through wettability alteration of reservoir rock surface is proposed as an effective approach to reduce water blockage and enhance gas production. The method can be applied to accelerating dewatering and preventing drilling and fracturing fluid leak-off as well. Analytical models for steady-state water-gas linear and radial flows are developed in the current paper. The effects of contact angle on capillary pressure and relative permeabilities have been included. The new model is validated using experimental data. Applications to fully and partially treated regimes show the competition between viscous and capillary effects on productivity of gas and water, which leads to an optimal contact angle for the maximum productivity index for each phase. This study shows the potential for optimising unconventional gas productivity through wettability control. Application of nanotechnology to rock wettability alteration is proposed.
Bibliographic Details
Society of Petroleum Engineers (SPE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know