Proxy Capacitance-Resistance Modeling for Well Production Forecasts in Case of Well Treatments
SPE Journal, ISSN: 1086-055X, Vol: 27, Issue: 6, Page: 3474-3488
2022
- 4Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We disclose a new-Age field-scale production forecast model that handles complex treatment of wellbores during their life cycle. Predictive production models have been an object of increased interest and research for a long time due to the need for a fast tool for forecasting production rates or choosing an optimal field development scheme. The existing approaches based on the material balance equation have several limitations and are not very applicable for real objects. Full-scale reservoir modeling is relatively slow and requires large computing resources. In this paper, we propose a proxy model based on advanced capacitance-resistance approach. The model predicts multiphase flow rates based on the available historical data of field production and information about well treatments. In addition, it provides preferable transmissibility trends, the presence of sealed or leaking faults, and the degree of dissipation between injector-producer well pairs. The advanced feature of the model is time-dependent weight coefficients, which have not been studied previously. They help in accounting the shut-in and workover periods and can be found during the optimization procedure simultaneously. Another feature is fast calculations due to a vectorized form of the model and application of modern optimization techniques. All these options allow modeling real oil fields with a large number of wells and a complex system of production control.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know