Prophylactic Effect of Ivermectin on SARS-CoV-2 Induced Disease in a Syrian Hamster Model
Research Square
2022
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
COVID-19, caused by SARS-CoV-2 infection, is currently among the most important public health concerns worldwide. Although several effective vaccines have been developed, there is an urgent clinical need for effective pharmaceutical treatments for treatment of COVID-19. Ivermectin, a chemical derivative of avermectin produced by Streptomyces avermitilis, is a macrocyclic lactone with antiparasitic activity. Recent studies have shown that ivermectin inhibits SARS-CoV-2 replication in vitro. In the present study, we investigated the in vivo effects of ivermectin in a hamster model of SARS-CoV-2 infection. The results of the present study demonstrate oral administration of ivermectin prior to SARS-CoV-2 infection in hamsters was associated with decreased weight loss and pulmonary inflammation. In addition, the administration of ivermectin reduced pulmonary viral titers and mRNA expression level of pro-inflammatory cytokines associated with severe COVID-19 disease. The administration of ivermectin rapidly induced the production of virus-specific neutralizing antibodies in the late stage of viral infection. Zinc concentrations leading to immune quiescence were also significantly higher in the lungs of ivermectin-treated hamsters compared to controls. These results indicate that ivermectin may have efficacy in reducing the development and severity of COVID-19 by affecting host immunity in a hamster model of SARS-CoV-2 infection.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know