Glacier Lake Detection Utilizing Remote Sensing Integration with Satellite Imagery and Advanced Deep Learning Methods
Research Square
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Himalayan glaciers are extremely susceptible to global climate change, leading to substantial glacial retreat, the creation and expansion of glacial lakes, and a rise in GLOFs.These alterations have changed the patterns of river flow and moved the borders of glaciers, resulting in significant socio-economic damages. Accurately monitoring glacial lakes is essential for managing GLOF events and evaluating the effects of climate change on the cryosphere. This study utilizes a Deep Learning-based U-net technique to extract glacial lakes from Landsat-8 satellite imagery by propagating characteristics and minimizing information loss. The method improves the importance given to glacial lakes, reduces the influence of low contrast, and handles different pixel categories. We apply this methodology to the Chandra-Bhaga basin, Himachal Pradesh located in NW Indian Himalaya, and successfully extract 107 glacial lakes. The U-net model attains an accuracy of 97.32%, precision of 95.98%, recall of 95.23%, and an IoU of 97.45% during validation with high-resolution photos from Google Earth and a digital elevation model. The suggested approach could be beneficial for precise and effective monitoring of glacial lakes in different areas, assisting in the management of natural disasters and offering vital information on the effects of climate change on the cryosphere.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know