Ni-Co doped TiO catalyst for efficient photocatalytic degradation of Malachite Green under UV and direct sunlight
Research Square
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the present study combustion synthesized TiO nanoparticles were wet impregnated with Ni, Co and Ni-Co, respectively. The photocatalytic performance of synthesized catalysts was evaluated against Malachite Green dye. The synthesized materials were characterized for crystallite size, surface morphology, elemental composition, and band-gap using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and ultra-violet diffused reflectance spectroscopy, respectively. The optimum parameters for maximum degradation were found by examining the effects of catalyst loading, initial dye concentration and light intensity. A comparative analysis of Ni-doped, Co-doped, and Ni-Co-doped TiO photocatalysts was conducted. The results indicate superior photocatalytic activity of Ni-Co doped TiO among the catalysts investigated under UV light. The degradation kinetics was studied and the underlying degradation mechanism is proposed with the help of LC-MS analysis. Furthermore, a comparative study on the degradation under solar radiation using Co-Ni/TiO was conducted.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know