Implementation and preliminary results of the first vertical stabilization control system for HL-2M
Research Square
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Achieving advanced divertor configurations and high-confinement operating regimes is crucial for mitigating divertor heat loads and exploring enhanced confinement physics in the HL-2M tokamak. However, these scenarios with highly elongated plasmas face severe Vertical Displacement Events (VDEs) that can lead to rapid plasma termination and potential device damage. Robust active control of vertical instability is therefore essential. As HL-2M lacks internal control coils, we developed two sets of vertical stabilization (VS) control systems, each employing a pair of external poloidal field (PF) coils, PF main power supplies, and VS power supplies. This paper details the first vertical stabilization (VS1) control system's circuit diagram, hardware architecture, and software implementation, and discusses issues encountered during commissioning and their solutions. By improving the internal hardware of the VS power supply, the voltage rise time was reduced to approximately 30 microseconds, resolving branch current imbalances. The transmission delay of the control signals is approximately 38 μs. Preliminary plasma experiments demonstrated effective vertical displacement control with the VS1 control system, achieving a maximum plasma elongation of 1.73 and typical control accuracy of ~20 mm. This work lays the foundation for robust control under high-parameter operational scenarios and the design and implementation of the higher-power VS2 control system.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know