Polyimide nanofiber aerogel with hierarchical porosity: a novel platform in high-temperature oil absorption
Research Square
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The development of advanced oil sorbents with superior thermal stability, high adsorption capacity, and excellent reusability is crucial for addressing hot oil leakage challenges, particularly in the petrochemical and machinery industries. This study presents a novel polyimide (PI) nanofiber aerogel (PIF-a) designed for high-temperature oil absorption. Utilizing electrospinning and post-treatment, PIF-a exhibits a hierarchical pore structure, ultralow density, and remarkable flexibility. At room temperature, PIF-a demonstrates an oil adsorption capacity of 83.1 g/g, surpassing conventional materials. Notably, PIF-a retains structural integrity up to 250°C, with a hot oil adsorption capacity of 78.6 g/g at 200°C. Despite repeated adsorption-desorption cycles, PIF-a's capacity remains stable, retaining over 90% of its initial performance. This breakthrough material, with its exceptional thermal stability, rapid adsorption kinetics, and durable reusability, represents a significant advancement in high-temperature oil absorption technology, broadening the application potential of nanofiber-based materials in addressing environmental oil spill emergencies.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know