PlumX Metrics
Embed PlumX Metrics

Polyimide nanofiber aerogel with hierarchical porosity: a novel platform in high-temperature oil absorption

Research Square
2024
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Article Description

The development of advanced oil sorbents with superior thermal stability, high adsorption capacity, and excellent reusability is crucial for addressing hot oil leakage challenges, particularly in the petrochemical and machinery industries. This study presents a novel polyimide (PI) nanofiber aerogel (PIF-a) designed for high-temperature oil absorption. Utilizing electrospinning and post-treatment, PIF-a exhibits a hierarchical pore structure, ultralow density, and remarkable flexibility. At room temperature, PIF-a demonstrates an oil adsorption capacity of 83.1 g/g, surpassing conventional materials. Notably, PIF-a retains structural integrity up to 250°C, with a hot oil adsorption capacity of 78.6 g/g at 200°C. Despite repeated adsorption-desorption cycles, PIF-a's capacity remains stable, retaining over 90% of its initial performance. This breakthrough material, with its exceptional thermal stability, rapid adsorption kinetics, and durable reusability, represents a significant advancement in high-temperature oil absorption technology, broadening the application potential of nanofiber-based materials in addressing environmental oil spill emergencies.

Bibliographic Details

Lidong Tian; Yi Zhang; Yibin Liu; Shan Zhang

Springer Science and Business Media LLC

Biochemistry, Genetics and Molecular Biology; Immunology and Microbiology; Medicine; Neuroscience; Psychology; Dentistry

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know