Biomass production a stronger driver of cellulosic ethanol yield than biomass quality
Agronomy Journal, ISSN: 1435-0645, Vol: 109, Issue: 5, Page: 1911-1922
2017
- 26Citations
- 37Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Many crops have been proposed as feedstocks for the emerging cellulosic ethanol industry, but information is lacking about the relative importance of feedstock production and quality. We compared yield and sugar content for seven bioenergy cropping systems in south-central Wisconsin (ARL) and southwestern Michigan (KBS) during three growing seasons (2012 through 2014). The cropping systems were (i) continuous corn stover (Zea mays L.), (ii) switchgrass (Panicum virgatum L.), (iii) giant miscanthus (Miscanthus × giganteus Greef & Deuter ex Hodkinson & Renvoize), (iv) hybrid poplar (Populus nigra × P. maximowiczii A. Henry ‘NM6’), (v) native grass mix, (vi) early successional community, and (vii) restored prairie. A high-throughput pretreatment and fermentation assay showed corn stover with the highest sugar content (213 g glucose kg [Glc] and 115 g xylose kg [Xyl]) followed by the two monoculture perennial grass treatments (154 [Glc] and 88 [Xyl]) and then the herbaceous polycultures (135 [Glc] and 77 [Xyl]). Biomass production and sugar content were combined to calculate ethanol yields. Miscanthus had the highest per hectare ethanol yields (1957 l ha yr ARL, 2485 l ha yr KBS) followed by switchgrass (1091 l ha yr ARL, 1017 l ha yr KBS) and corn stover (1121 l ha yr ARL, 878 l ha yr KBS). Perennial grass cropping systems (i.e., switchgrass and miscanthus) had higher per hectare ethanol yields at both sites relative to diverse systems that included dicots. Despite feedstock differences in fermentable sugars, biomass production was the strongest driver of per hectare ethanol yield.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know