Nmda Receptor Antagonist Mk801 Reduces Dendritic Spine Density and Stability in Zebrafish Pyramidal Neurons
SSRN Electronic Journal
- 200Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
NMDA-type glutamate receptors play a critical role in activity-dependent neurite growth. We employed cell type-specific genetic labeling in zebrafish to examine the effects of NMDA receptor antagonism on the morphological development of tectal pyramidal neurons (PyrNs). Our data demonstrate that the NMDA receptor antagonist MK801 reduces PyrN spine density and stability without altering dendritic growth and branching. However, the axons that synapse onto PyrN dendritic spines do exhibit reduced arbor growth and branching in response to MK801 treatment. Axons that synapse with PyrNs, but not on spines, are unaffected by MK801 treatment. These findings suggest a fundamentally different role for NMDARs during the development of spiny versus aspiny dendrites.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know