Applied Surrogate Model: Performance Prediction of Heat Pipe with Mesh Wick
SSRN, ISSN: 1556-5068
2023
- 164Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Results are provided for an investigation of a heat pipe with mesh wick applied with surrogate model. The model including radial basis function interpolation (RBF), Kriging model (KRG), and the k-nearest neighborhood model (K-NN) were studied and compared. A set of training and validating populations were classified using a k-means clustering technique. The design variable included the geometric shape of heat pipe such as its diameter, the properties and percentage used of working fluid, and the temperature at the evaporator. The prediction case study included the heat transfer rate (q), and total difference temperature between evaporator and condenser section (DT). The prediction results found that the heat transfer rate gave the most accurate indicator while the DT is passable to applied. The most accurate model was presented as a Kriging model with percentage errors 13.0622 and 14.7184 for heat transfer rate and total difference temperature respectively. The second best accuracy was achieved with the RBF model with linear kernel while the third and fourth best are including thin plate and cubic spline kernel respectively.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know