A Novel Method for Extracting Crude Pb from Lead-Acid Battery Grid Alloy By Vacuum Distillation
SSRN, ISSN: 1556-5068
2023
- 97Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The waste lead-acid battery grid, a predominantly lead-based alloy, has seen a significant surge in production, positioning it as a primary source of Pb. Conventionally, pyrometallurgical techniques employed to treat this waste are fraught with the complex process of segregating Sb and As to extract Pb. This not only escalates energy consumption but also exacerbates environmental challenges with the emission of hazardous wastes. As an alternative, this research introduces vacuum distillation (VD) as a novel and efficient technique for the elimination of Sb and As from grid alloy. Through a blend of theoretical and experimental examinations, the feasibility of utilizing VD for direct crude Pb synthesis was corroborated. Empirical results demonstrated that a remarkable 98.97% Pb from the grid alloy underwent recovery, producing crude Pb with a purity level of 98.56% at a distillation temperature of 923 K sustained for 60 min. This extracted crude Pb is apt for subsequent refinement through electrolytic processes. Sb and As elements transitioned to volatile phases, avoiding the generation of arsenic-containing dust. A salient feature of this VD technique is its zero emissions, both in gaseous and aqueous forms, ensuring an eco-friendly and sustainable extraction of crude Pb.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know