Anthropogenic Activities Enhance Mercury Methylation in Sediments of a Multifunctional Lake: Evidence from Dissolved Organic Matter and Mercury-Methylating Microorganisms
SSRN, ISSN: 1556-5068
2023
- 142Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Multifunctional lakes are highly susceptible to anthropogenic influences, potentially introducing exogenous pollutants or nutrients into aquatic sediments. This, in turn, affects the mercury (Hg) methylation in the sediment. This study was conducted in the Changshou Lake, a representative multifunctional lake in southwestern China, with a specific focus on investigating the Hg variations, the potential of Hg methylation, and the influential factors affecting the methylation process within sediments across different functional areas. The results revealed significant variations in total mercury concentrations between the ecological culture area (area I), the ecological tourism area (area II), and the wetland protection area (area III), suggesting the possibility of exogenous Hg introduction associated with human activities. Furthermore, sediments from areas I and II displayed a greater potential for Hg methylation. This was ascribed to the enhanced diversity and abundance of Hg-methylating microorganisms, especially Geobacteraceae, induced by elevated levels of dissolved organic carbon in these two areas from human activities like historical cage culture. This study provides evidence that anthropogenic activities enhance the process of Hg methylation in the sediments of multifunctional lakes, highlighting the necessity of implementing comprehensive scientific water quality management practices to mitigate the negative impacts of human influences on these unique ecosystems.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know