Uncovering the Potential of Yttrium Doped Zinc Oxide Nanoparticles as an Efficient Catalyst for Photodegradation of Recalcitrant Pollutant and a Contributor Antibacterial Property
SSRN, ISSN: 1556-5068
2023
- 176Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This work focused on the development of photocatalytic and antibacterial ZnO doped nanoparticles for wastewater treatment application. ZnO nanoparticle was successfully doped via a sol-gel method with different concentration of yttrium (Y), a rare-earth element. The improved properties of the structural, optical, photocatalytic and antibacterial after the nanoparticles doping modification were analyzed. XRD analysis confirmed the hexagonal (wurtzite) structure with average crystalline size between 10 to 22.7 nm. The exhibited XRD peaks that shifted towards lower angles after doping confirmed the Y3+ substitution in the ZnO structures. High-resolution transmission electron microscopy (HRTEM) showed an increase in grain size as the concentration of Y3+ ions inside the ZnO matrix increased. Ultraviolet-visible-near-infrared spectroscopic measurement revealed a red shift of the bandgap energy of 0.128 eV, which confirmed the substitution process. It was observed that the Y-dopant significantly improved the photocatalytic activity of the ZnO nanoparticles; 91.8%, 72.9%, 29.2% and 85.0% of 20ppm of HA, BPA, phenol and caffeine respectively under UVA light irradiation. In addition, Y-doped ZnO nanoparticle was found to be highly effective against S. aureus as compared to E. coli. The 9 wt.% Y-doped ZnO (9YZnO) nanoparticles have shown no bacterial growth at both minimum inhibitory concentration/minimum bacterial concentration MIC/MBC concentration which served as evidence of the improved antibacterial properties of the modified ZnO nanoparticles. Overall, in this study Y-doped ZnO nanoparticle had shown good performance as photocatalysis material in degrading organic compounds (natural, industrial and consumable organic compounds) and antibacterial material against germ positive microorganism.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know