Electrocatalytic Reduction of Nitrate to Ammonia by Pd/In Modified Nickel Foam Electrode in Aqueous Solution
SSRN, ISSN: 1556-5068
2023
- 136Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Nitrate pollution in surface water and ground water has drawn wide attention, which has brought challenges to human health and natural ecology. Electroreduction of nitrate to NH3 in waste water was a way to turn waste into wealth, which has attracted interest of many researchers. Using Nickel foam as substrate, we prepared Pd/In bimetallic electrode (NF-Pd/In) according to a two-step electrodeposition method. There are many irregularly shaped particles in the size range of 10 nm -100 nm accumulated on the surface of prepared NF-Pd/In electrode, which could supply high specific area and more active sites for nitrate electroreduction. FESEM-EDS, XRD and XPS analysis confirmed the uniform distribution of Pd and In on the surface of prepared NF-Pd/In electrode, with a mass ratio of 4.5/1. Above 96% of 100 mg/L NO3-N was removed and 95% of NH3 selectivity was reached after 5 hours of reaction under -1.6 V vs. Ag/AgCl sat. KCl when using 0.05 mol/L of Na2SO4 as electrolyte. High concentration of NaCl (0.05 mol/L) in the test solution dramatically decreased the NH3 selectivity because the produced NH3 could be further oxidized to N2 by the formed HClO from Cl-. EIS tests indicated that the prepared NF-Pd/In electrode showed much lower electrode resistance than NF due to the adsorptive property and electrocatalytic ability for nitrate removal. Density functional theory (DFT) calculations indicated that the presence of In could promote the conversion of NO3- to *NO3 during the process of nitrate electroreduction to NH3. Circulating tests demonstrated the stability of prepared NF-Pd/In electrode.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know