Attitude Control of Flexible Spacecraft Subject to Disturbances with Unknown Frequencies
SSRN, ISSN: 1556-5068
2023
- 95Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The disturbance rejection and vibration suppression problem (DRVSP) of flexible spacecraft has been investigated recently when the disturbance frequencies are exactly known. In this paper, we further consider the same problem when the disturbance frequencies are unknown. An adaptive state feedback controller is proposed, which employs an internal model to reject the external disturbance with unknown frequencies and an adaptive law to estimate the unknown frequencies. Note that the proposed controller can not only solve the DRVSP of flexible spacecraft without the measurement of the modal variables, but also guarantee that the estimated frequencies converge to their true values. Simulation results illustrate the effectiveness of the proposed controller.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know