Improving Diagnostics and Prognostics of Implantable Cardioverter Defibrillator Batteries with Interpretable Machine Learning Models
SSRN, ISSN: 1556-5068
2024
- 1Citations
- 153Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Medtronic Implantable Cardioverter Defibrillators (ICDs) and Cardiac Resynchronization Therapy Defibrillators (CRT-Ds) rely on high-energy density, lithium batteries, which are manufactured with a special CFx-SVO hybrid cathode design. Consistently high battery performance is crucial for this application. To evaluate performance, batteries are tested, both at the time of production and post-production, through periodic sampling carried out over multiple years. This considerable amount of experimental data is exploited for the first time in this work to develop a data-driven, machine learning approach, relying on Generalized Additive Models (GAMs) to predict battery performance, based on production data. GAMs combine prediction accuracy, which enables evaluation of battery performance immediately after production, with model interpretability, which provides clues on how to further improve battery design and production. Model interpretation allows to identify key features from the battery production data that offer physical insights to support future battery development, and foster the development of physics-based model for hybrid cathode batteries. The proposed approach is validated on 21 different datasets, targeting several performance-related features, and delivers consistently high prediction accuracy on test data.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know