Four ClEF1A Genes Involved in Self-Incompatibility in 'Xiangshui Lemon' Confer Early Fowering and Increase Stress Tolerance in Transgenic Arabidopsis
SSRN, ISSN: 1556-5068
2024
- 88Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The plant elongation factor eEF1A is involved in coregulating not only the translation of proteins and controlling translation-related signaling but also in signaling associated with cell growth, stress response and motility, controlling apoptosis and responding to adversity in plants. In this study, four eEF1A genes, namely, ClEF1A-1, ClEF1A-2, ClEF1A-3, and ClEF1A-4, were identified from the genomic and ubiquitin-modified omics data of the 'Xiangshui Lemon', and bioinformatics analysis revealed that these four genes have relatively similar structures with conserved sequences; ClEF1A-1 and ClEF1A-4 were highly expressed in pollen, and temporal expression analysis demonstrated that the expression of ClEF1As was significantly greater under self-pollination than under cross-pollination. All four genes were localized in the nucleus. ClEF1A overexpression promoted early flowering and improved drought and salt stress tolerance in transgenic Arabidopsis plants. Yeast two-hybrid assays revealed that ClEF1As interacted with F-box, eIF3-G, the organ-specific-like protein S2, AGL62, S1-RNase, S2-RNase, S3-RNase and S4-RNase. This study demonstrated the functions of ClEF1As and provided a baseline for further studies on the associations of ClEF1As with self-incompatibility and abiotic stresses.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know