The Co-Mof Array Derived Cofeni-Ldh Anode and Cop/Feni 2 P Heterojunction Cathode for Ampere-Level Seawater Overall Splitting
SSRN, ISSN: 1556-5068
2024
- 142Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The seawater electrolysis technology powered by renewable energy is recognized as the promising “green hydrogen” production method to solve serious energy and environmental problems. The lack of low-cost and ampere-level current OER (oxygen evolution reaction) and HER (hydrogen evolution reaction) catalysis limits their industrial application. In this work, a unique tri-metal (Co/Fe/Ni) layered double hydroxide hollow array anode catalyst (CFN-LDH/NF) and the CoP/FeNi2P heterojunction hollow array cathode are successfully prepared via one in-situ growth of Co-MOF on nickel foam (Co-MOF/NF) precursor, which exhibits excellent catalytic performance. The η1000 values of 352 and 392 mV are achieved for CFN-LDH/NF (OER catalyst) in 1.0 M KOH and alkaline seawater solution, respectively. The CFNP/NF with a low overpotential of 281 mV is required to reach 1000 mA cm−2 current density for HER in 1.0 M KOH solution, while the η1000 in alkaline seawater solution is 312 mV. The CFN-LDH/NF||CFNP/NF electrolyzer exhibits excellent long-term durability over 120 h, achieving acurrent density of 500 mA cm−2 at 1.825 V in 1.0 M KOH solution. The construction of hollow tri-metal LDH and phosphides heterostructures may open a new and relatively unexplored path for fabricating high performance seawater splitting catalysis.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know