Development of Operable Modular Louvers Sited in a Single-Sided Ventilated Room Through 3d Parametric Optimization
SSRN, ISSN: 1556-5068
2024
- 89Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The current design practices of buildings to respond to environmental inputs have led to operable envelopes with external louver blinds systems. The key aspect of any openable louver flap design is to optimize inlets that might induce ventilation for occupants with low indoor airflow. Computational Fluid Dynamics (CFD) in 3D parametric modeling investigated the influence of openable louver inlet geometries (right trapezoid) and positions in a ventilated room. A single-sided ventilated room designed with two mirrored split blocks of inlets attached to that wall perpendicular to the wind was employed for this study. Twenty-eight different inlet shape geometries with their cross-sectional changes were investigated. In addition, the inlets' rotation, orientation, and elevation differences were also studied. Wind tunnel experiments were conducted to measure airflows inside the model room to validate the CFD simulations. A discernible impact was observed when the inclined side of the right trapezoid was oriented upward or downward, where inlet flaps open to the sides of the window. The mean air velocity in the ventilated room becomes more than double when inlet flaps open to the sides of the window, where the elevation difference in the inlet blocks introduces the pressure difference compared to no elevation difference in inlets. This study guides into refining an operable modular louver design to enhance air circulation and natural ventilation in dwelling spaces.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know