Bifunctional Electrolyte Additive Ammonium Persulfate for High-Performance Aqueous Zinc-Ion Batteries
SSRN, ISSN: 1556-5068
2024
- 1Citations
- 61Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The main issues encountered in aqueous zinc-ion batteries (ZIBs) include corrosion and passivation of the zinc anode, electrolyte decomposition leading to hydrogen evolution, and dissolution consumption of cathode materials. This study proposes the use of ammonium persulfate (APS) as an electrolyte additive to enhance battery performance. The addition of APS not only adjusts the solvation structure of Zn, reduces water activity, but also allows NH ions to preferentially adsorb onto the surface of the zinc electrode, forming a protective layer and achieving dendrite-free zinc anodes. Results indicate that the inclusion of APS additive in the electrolyte can increase the specific capacity of zinc-ion batteries from 321 mAh g to 418 mAh g. Additionally, batteries with APS exhibit superior stability. Under low current density, the battery lifespan can reach 2100 hours and a coulombic efficiency can up to 99.6%. This study delves into the design of multifunctional electrolyte additives and provides valuable insights for the development of practical ZIBs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know