Thermochemical Valorisation of Cattle Manure into Gaseous Fuel and Fufural-Rich Bio-Oil
SSRN, ISSN: 1556-5068
2024
- 66Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Surplus carbon, in the form of carbon dioxide (CO2), has aggravated global warming over several past decades. To divert the current energy mix that relies heavily on fossil fuels, researchers have realised waste materials as an alternative energy source and have put in multifaceted efforts to valorise them. Such attempts could evolve into a practical strategy to reduce CO2 emissions and potentially contribute in establishing circular economy by simultaneously producing value-added chemicals and fuels from waste. This study investigated the transformation of cattle manure (CM) into value-added products (syngas and furfural) via a thermochemical pathway. The CM was treated with FeCl3 prior to pyrolysis to enhance the conversion selectivity toward syngas and furfural. Thermogravimetric analysis revealed that Fe impregnation facilitated the thermal degradation of CM, resulting in enhanced syngas formation. The oil product obtained from the Fe-impregnated CM exhibited notable enrichment in furfural and a much simpler chemical composition than that of the untreated CM. Furthermore, the produced biochar catalytically expedited the kinetics of the transesterification reaction of canola oil. The overall results of this study offer a practical means of converting livestock manure into useful resources, thereby contributing to the realisation of a circular economy.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know