PlumX Metrics
Embed PlumX Metrics

Stochastic modeling of artificial neural networks for real-time hydrological forecasts based on uncertainties in transfer functions and ANN weights

Hydrology Research, ISSN: 2224-7955, Vol: 52, Issue: 6, Page: 1490-1525
2021
  • 6
    Citations
  • 0
    Usage
  • 7
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

This study proposes a stochastic artificial neural network (named ANN_GA-SA_MTF), in which the parameters of the multiple transfer functions considered are calibrated by the modified genetic algorithm (GA-SA), to effectively provide the real-time forecasts of hydrological variates and the associated reliabilities under the observation and predictions given (model inputs); also, the resulting forecasts can be adjusted through the real-time forecast-error correction method (RTEC_TS&KF) based on difference between real-time observations and forecasts. The observed 10-days rainfall depths and water levels (i.e., hydrological estimates) from 2008 to 2018 recorded within the Shangping sub-basin in northern Taiwan are adopted as the study data and their stochastic properties are quantified for simulating 1,000 sets of rainfall and water levels at 36 10-days periods as the training datasets. The results from the model verification indicate that the observed 10-days rainfall depths and water levels are obviously located at the prediction interval (i.e., 95% confidence interval), revealing that the proposed ANN_GA-SA_MTF model can capture the temporal behavior of 10-days rainfall depths and water levels within the study area. In spite of the resulting forecasts with an acceptable difference from the observation, their real-time corrections have evident agreement with the observations, namely, the resulting adjusted forecasts with high accuracy.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know