Runoff prediction using rainfall data from microwave links: Tabor case study
Water Science and Technology, ISSN: 0273-1223, Vol: 2017, Issue: 2, Page: 351-359
2017
- 11Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Rainfall spatio-temporal distribution is of great concern for rainfall-runoff modellers. Standard rainfall observations are, however, often scarce and/or expensive to obtain. Thus, rainfall observations from non-traditional sensors such as commercial microwave links (CMLs) represent a promising alternative. In this paper, rainfall observations from a municipal rain gauge (RG) monitoring network were complemented by CMLs and used as an input to a standard urban drainage model operated by the water utility of the Tabor agglomeration (CZ). Two rainfall datasets were used for runoff predictions: (i) the municipal RG network, i.e. the observation layout used by the water utility, and (ii) CMLs adjusted by the municipal RGs. The performance was evaluated in terms of runoff volumes and hydrograph shapes. The use of CMLs did not lead to distinctively better predictions in terms of runoff volumes; however, CMLs outperformed RGs used alone when reproducing a hydrograph’s dynamics (peak discharges, Nash–Sutcliffe coefficient and hydrograph’s rising limb timing). This finding is promising for number of urban drainage tasks working with dynamics of the flow. Moreover, CML data can be obtained from a telecommunication operator’s data cloud at virtually no cost. That makes their use attractive for cities unable to improve their monitoring infrastructure for economic or organizational reasons.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85050863776&origin=inward; http://dx.doi.org/10.2166/wst.2018.149; http://www.ncbi.nlm.nih.gov/pubmed/29851387; https://iwaponline.com/wst/article/2017/2/351/38782/Runoff-prediction-using-rainfall-data-from; https://dx.doi.org/10.2166/wst.2018.149; https://iwaponline.com/wst/article-abstract/2017/2/351/38782/Runoff-prediction-using-rainfall-data-from?redirectedFrom=fulltext
IWA Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know