Rapid cultivation of aerobic granular sludge by xanthan gum in SBR reactors
Water Science and Technology, ISSN: 0273-1223, Vol: 2017, Issue: 2, Page: 360-369
2017
- 12Citations
- 30Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study focuses on the effect of xanthan gum on aerobic sludge granulation, through close monitoring of the physical and chemical changes of the aerobic granular sludge, and treatment performance. Two sequencing batch reactors (SBRs), R1 and R2, were seeded with activated sludge only (R1) and with a mixture of activated sludge and 40 mg/L of xanthan gum (R2). The results showed that granulation finished on the 20th day in R2, far faster than the granulation time of 30 days in R1. Meanwhile, there was a reliably higher sludge concentration, better settling properties and better particle mechanical strength in R2, and better removal performance of total nitrogen (TN) and chemical oxygen demand (COD). The results demonstrated that seeding xanthan gum enhanced the aerobic sludge granulation in the SBR. Maybe its anionic and hydrophilic surface characteristics facilitate interactions with cations and other polysaccharides, inducing stronger gelation, which promoted the formation of particles or increased the internal relationship between particles, thereby increasing the cohesion within the sludge, so that the granular sludge was not easily broken.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85050888559&origin=inward; http://dx.doi.org/10.2166/wst.2018.151; http://www.ncbi.nlm.nih.gov/pubmed/29851388; https://iwaponline.com/wst/article/2017/2/360/38792/Rapid-cultivation-of-aerobic-granular-sludge-by; https://dx.doi.org/10.2166/wst.2018.151; https://iwaponline.com/wst/article-abstract/2017/2/360/38792/Rapid-cultivation-of-aerobic-granular-sludge-by?redirectedFrom=fulltext
IWA Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know