iPSI(2L)-EDL: a Two-layer Predictor for Identifying Promoters and their Types based on Ensemble Deep Learning
Current Bioinformatics, ISSN: 2212-392X, Vol: 19, Issue: 4, Page: 327-340
2024
- 1Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Promoters are DNA fragments located near the transcription initiation site, they can be divided into strong promoter type and weak promoter type according to transcriptional activation and expression level. Identifying promoters and their strengths in DNA sequences is essential for understanding gene expression regulation. Therefore, it is crucial to further improve predictive quality of predictors for real-world application requirements. Here, we constructed the latest training dataset based on the RegalonDB website, where all the promoters in this dataset have been experimentally validated, and their sequence similarity is less than 85%. We used one-hot and nucleotide chemical property and density (NCPD) to represent DNA sequence samples. Additionally, we proposed an ensemble deep learning framework containing a multi-head attention module, long short-term memory present, and a convolutional neural network module. The results showed that iPSI(2L)-EDL outperformed other existing methods for both promoter prediction and identification of strong promoter type and weak promoter type, the AUC and MCC for the iPSI(2L)-EDL in identifying promoter were improved by 2.23% and 2.96% compared to that of PseDNC-DL on independent testing data, respectively, while the AUC and MCC for the iPSI(2L)-EDL were increased by 3.74% and 5.86% in predicting promoter strength type, respectively. The results of ablation experiments indicate that CNN plays a crucial role in recognizing promoters, the importance of different input positions and long-range dependency relationships among features are helpful for recognizing promoters. Furthermore, to make it easier for most experimental scientists to get the results they need, a userfriendly web server has been established and can be accessed at http://47.94.248.117/IPSW(2L)-EDL.
Bibliographic Details
Bentham Science Publishers Ltd.
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know