PlumX Metrics
Embed PlumX Metrics

Toxicity mechanism of gadolinium oxide nanoparticles and gadolinium ions in human breast cancer cells

Current Drug Metabolism, ISSN: 1875-5453, Vol: 20, Issue: 11, Page: 907-917
2019
  • 21
    Citations
  • 0
    Usage
  • 24
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Background: Due to the potential advantages of Gadolinium Nanoparticles (NPs) over gadolinium elements, gadolinium based NPs are currently being explored in the field of MRI. Either in elemental form or nanoparticulate form, gadolinium toxicity is believed to occur due to the deposition of gadolinium ion (designated as Gd ion or simply G ion). Objective: There is a serious lack of literature on the mechanisms of toxicity caused by either gadolinium-based NPs or ions. Breast cancer tumors are often subjected to MRIs, therefore, human breast cancer (MCF-7) cells could serve as an appropriate in vitro model for the study of Gadolinium Oxide (GO) NP and G ion. Methods: Cytotoxicity and oxidative damage was determined by quantifying cell viability, cell membrane damage, and Reactive Oxygen Species (ROS). Intracellular Glutathione (GSH) was measured along with cellular Total Antioxidant Capacity (TAC). Autophagy was determined by using Monodansylcadaverine (MDC) and Lysotracker Red (LTR) dyes in tandem. Mitochondrial Membrane Potential (MMP) was measured by JC-1 fluorescence. Physicochemical properties of GO NPs were characterized by field emission transmission electron microscopy, X-ray diffraction, and energy dispersive spectrum. Results: A time-and concentration-dependent toxicity and oxidative damage was observed due to GO NPs and G ions. Bax/Bcl2 ratios, FITC-7AAD double staining, and cell membrane blebbing in phase-contrast images all suggested different modes of cell death induced by NPs and ions. Conclusion: In summary, cell death induced by GO NPs with high aspect ratio favored apoptosis-independent cell death, whereas G ions favored apoptosis-dependent cell death.

Bibliographic Details

Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham; Alrokayan, Salman

Bentham Science Publishers Ltd.

Pharmacology, Toxicology and Pharmaceutics; Biochemistry, Genetics and Molecular Biology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know