Physico-Chemical Study of the Anti-Diabetic Drug of [BzN-EJJ-amide] for Treatment Type2 Diabetes Using CNT Sensor by Drug Delivery Method
OBM Genetics, ISSN: 2577-5790, Vol: 8, Issue: 2, Page: 1-21
2024
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
The potential and selective inhibitors of protein tyrosine phosphatase 1B (PTP1B) are therapeutically useful in treating type 2 diabetes. N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanine-[4-phosphono(difluoro-methyl)]-L-phenylalanineamide (BzN-EJJ-amide) (BGD) which is the ligand of 1LQF protein code extracted from protein data bank (PDB) is an inhibitor of PTP-1B that indicates selectivity over several protein tyrosine phosphatases. In this research, the interaction between the anti-diabetic drug of BzN-EJJ-amide and armchair single-walled carbon nanotube (SWCNT) has been investigated based on Density Functional Theory (DFT) theory to design, improve and expand carbon nanotube drug carriers as the applied sensors in drug delivery systems. Therefore, physico-chemical properties of optimized geometry, quantum molecular descriptors, topological parameters, and frontier molecular orbitals of different drug arrangements on CNT at the highest equilibrium at CAM-B3LYP/6-311+G (2d,p) level of theory have been explored. The results of Nuclear Magnetic resonance (NMR), Natural Bond Orbital (NBO), Infrared (IR), and charge distributions have indicated that BzN-EJJ-amide → (5, 5) armchair SWCNT complex presents the position of active sites of labeled N, O, P, and F atoms in this linkage, which transfer the charge of electrons in polar bisphosphonate agent of BzN-EJJ-amide toward (5, 5) armchair SWCNT sensor. Evaluation of the results obtained from the electrostatic potential (ESP) map, Frontier orbitals of HOMO, LUMO, and UV-VIS spectroscopy analysis have exhibited that the direction of electron movement is generally from drug molecule to carbon nanotube as the sensor for BzN-EJJ-amide anti-diabetes drug.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know