Spectral collocation method based on special functions for solving nonlinear high-order pan-Tograph equations
Computational Methods for Differential Equations, ISSN: 2383-2533, Vol: 11, Issue: 3, Page: 589-604
2023
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, a spectral collocation method for solving nonlinear pantograph type delay differential equations is presented. The basis functions used for the spectral analysis are based on Chebyshev, Legendre, and Jacobi polynomials. By using the collocation points and operations matrices of required functions such as derivative functions and delays of unknown functions, the method transforms the problem into a system of nonlinear algebraic equations. The solutions of this nonlinear system determine the coefficients of the assumed solution. The method is explained by numerical examples and the results are compared with the available methods in the literature. It is seen from the applications that our method gives more efficient results than that of the reported methods.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know