Review of the strain-based formulation for analysis of plane structures
Iranian Journal of Numerical Analysis and Optimization, ISSN: 2423-6969, Vol: 11, Issue: 2, Page: 437-483
2021
- 9Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Since the introduction of the finite element approach, as a numerical solution scheme for structural and solid mechanics applications, various formulation methodologies have been proposed. These ways offer different advantages and shortcomings. Among these techniques, the standard displacement-based approach has attracted more interest due to its straightforward scheme and generality. Investigators have proved that the other strategies, such as the force-based, hybrid, assumed stress, and assumed strain provides special advantages in comparison with the classic finite elements. For instance, the mentioned techniques are able to solve difficulties, like shear locking, shear parasitic error, mesh sensitivity, poor convergence, and rotational dependency. The main goal of this two-part study is to present a brief yet clear portrait of the basics and advantages of the direct strain-based method for development of high-performance plane finite elements. In this article, which is the first part of this study, assumptions and the basics of this method are introduced. Then, a detailed review of all the existing strain-based membrane elements is presented. Although the strain formulation is applicable for different types of structures, most of the existing elements pertain to the plane structures. The second part of this study deals with the application and performance of the reviewed elements in the analysis of plane stress/strain problems.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know