Longitudinal Vibration of Nanobeams by Two-Phase Local/Nonlocal Elasticity, Rayleigh Theory, and Generalized Differential Quadrature Method
Mechanics of Advanced Composite Structures, ISSN: 2423-7043, Vol: 10, Issue: 2, Page: 221-232
2023
- 3Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
Article Description
To solve a differential equation of motion via more reliable procedures, it is essential to realize their efficiency. Whether Rayleigh's theory can be a compatible platform with twophase local/nonlocal elasticity to render more reliable results compared to other theories or not is the main question that will be answered by this paper. Thus, nanobeam modeled by Rayleigh beam theory is analyzed by two-phase local/nonlocal elasticity. Governing equation in presence of the axial and transverse displacements is derived by means of Hamilton’s principle and differential law of two-phase elasticity. Next, fourth-order Generalized Differential Quadrature Method (GDQM) is utilized to attain the discretized two-phase formulation. In order to confirm, the method and the results are compared with the exact solution prepared and presented in the literature. Moreover, the effects of various parameters such as geometrical properties like thickness, mode shape number, Local phase fraction coefficient, and nonlocal factor on the natural frequency are investigated to clarify that utilizing these theories with a common goal how ends with more accurate results, and how affects the natural frequencies.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know