Flujo de agua subterránea y transporte en medios geológicos fracturados: una revisión
Revista Mexicana de Ciencias Geologicas, ISSN: 2007-2902, Vol: 41, Issue: 1, Page: 103-129
2024
- 2Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The groundwater flow and the transport of solutes and contaminants in fractured geologic media play a very important role in various hydrogeological and geological processes. Fractures are discontinuities that occur in practically all types of rocks, consolidated and semi-consolidated sediments, in which groundwater flows at different scales of space and time. This article reviews more than 20 years of research in the CGEO of different selected examples in Mexico, from local to regional scales, associated with 1) gravitational Groundwater Flow Systems, 2) hydrogeochemical interaction of groundwater with fractured rocks through which it circulates, 3) instrumentation and coupled numerical analysis of flow parameters and time-varying geomechanics, during consolidation associated with pumping, 4) analysis of fracture generation with the development and application of coupled flow and geomechanical equations, 5) formation of new minerals, 6) sustenance of ecosystems, 7) artificial fracturing of soils for their conservation and infiltration of rainwater improvement; and on the issue of transport of natural solutes, 8) used as a tracers, 9) toxic elements to health and environment, 10) spills of hydrocarbon derivatives in low permeability and double porosity media due to fracturing and 11) heat. The results show the importance of the physical-chemical interaction between fractured and granular geological media at both local and regional scales, where groundwater residence times range from a few days to thousands of years; which implies modifying the criteria for water management and the permanence of ecosystems in the country. The complexity of these processes requires different methodologies for their evaluation, among them the instrumentation and calibration of numerical models from 1D to 3D for analysis, predictions and the proposal of restoration, sustainability and management solutions; they also help to prevent, control and mitigate the negative impacts on health and the environment caused by the induction of geogenic elements and by various types of pollutants; fractured geologic media also support numerous terrestrial and marine ecosystems; in the case of damaged agricultural soils, artificial fracturing allows increasing rainwater infiltration and improving productivity in adaptation to climate change and reducing the extraction in aquifers where safe capacity has been exceeded; unfortunately, excessive extraction in closed basins is causing fracturing of the aquitards, both hydraulic and due to differential settlement, which favors the migration of pore water rich in elements harmful to human health and the environment, whose natural function was its protection. All this requires designing mechanisms for the transfer of scientific knowledge to society and decision makers to propose novel restoration and sustainability strategies, under the new paradigm of Gravitational Groundwater Flow Systems.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85192994897&origin=inward; http://dx.doi.org/10.22201/cgeo.20072902e.2024.1.1772; http://www.rmcg.unam.mx/index.php/rmcg/article/view/1772; https://dx.doi.org/10.22201/cgeo.20072902e.2024.1.1772; https://www.rmcg.unam.mx/index.php/rmcg/article/view/1772
Universidad Nacional Autonoma de Mexico
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know