General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory
Quantum, ISSN: 2521-327X, Vol: 7
2023
- 15Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
With a focus on universal quantum computing for quantum simulation, and through the example of lattice gauge theories, we introduce rather general quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple (bosonic and fermionic) quantum numbers with non-trivial functional coefficients. In particular, we analyze diagonalization of Hamiltonian terms using a singular-value decomposition technique, and discuss how the achieved diagonal unitaries in the digitized time-evolution operator can be implemented. The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions, for which a complete quantum-resource analysis within different computational models is presented. The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories. The example chosen further demonstrates the importance of adopting efficient theoretical formulations: it is shown that an explicitly gauge-invariant formulation using loop, string, and hadron degrees of freedom simplifies the algorithms and lowers the cost compared with the standard formulations based on angular-momentum as well as the Schwinger-boson degrees of freedom. The loop-string-hadron formulation further retains the non-Abelian gauge symmetry despite the inexactness of the digitized simulation, without the need for costly controlled operations. Such theoretical and algorithmic considerations are likely to be essential in quantumly simulating other complex theories of relevance to nature.
Bibliographic Details
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know