Primary Microstructure Characterization of Co-20Ni-9Al-7W-3Re-2Ti Superalloy
Journal of Mining and Metallurgy, Section B: Metallurgy, ISSN: 1450-5339, Vol: 58, Issue: 1, Page: 43-49
2022
- 2Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The characterization of the primary microstructure of the new Co-based superalloy of Co-20Ni-9Al-7W-3Re-2Ti type was shown in this article. The investigated alloy was manufactured by induction melting process from pure feedstock materials. The fundamental technological problem related to Co-Al-W-X multicomponent alloys casting process is a strong susceptibility to interdendritic segregation of alloying elements, especially tungsten and rhenium. The performed analysis revealed that the observed effect of alloying elements segregation was detectable and much stronger than for Co-9Al-9W and Co-20Ni-7Al-7W alloys, related to titanium, nickel, and aluminium migration to inter-dendritic spaces. Consequently, the tungsten concentration gradient between dendritic and interdendritic zones was higher than for Co-9Al-9W and Co-20Ni-7Al-7W alloys. The same situation was in the case of rhenium and cobalt, but Co concentration in the interdendritic zone was only slightly lower.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know