EXISTENT STATE AND REMOVAL RATE OF SILVER IN LEAD-SILVER SLAG DURING THE MELT-VAPORIZATION PROCESS
Journal of Mining and Metallurgy, Section B: Metallurgy, ISSN: 1450-5339, Vol: 59, Issue: 2, Page: 349-361
2023
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, Ag contained in the lead-silver slag was recovered during the melt-vaporization process. The existing Ag state in the soot was analyzed, the influence of the reaction temperature, the carbon ratio, and the reaction time on the removal rate of the silver was investigated, and the process conditions were optimized using reaction surface methodology. Silver chloride, silver metal, silver sulfide, silver oxide, and silver sulfate are the main silver phases in lead-silver slag, of which silver chloride and silver sulfide are the main phases. The silver oxide (AgO) and the silver chloride (AgCl) in the leadsilver slag volatilize to soot, the silver sulfide (AgS) is oxidized by oxygen to silver sulfate (AgSO), and elemental silver volatilizes with Pb and Zn to form alloys. The silver is ultimately present as Ag, AgCl, AgO and AgSO in the soot. The removal rate of the silver gradually increases with increasing reaction temperature and tends to remain stable at 1300°C. With a gradual increase in the carbon content, the removal rate of silver first increases and then decreases. The highest value is 80.12 wt% when the carbon content is 16.30 wt%. As the holding time increases, the silver removal rate gradually increases and then stabilizes at 79.97 wt% even at a holding time of 150 minutes. The optimum process conditions for silver removal are a reaction temperature of 1340°C, a carbon content of 16.10 wt%, and a holding time of 165 minutes. The average removal rate of silver under these conditions is 80.42 wt%. The research in this article provides a theoretical basis for the removal and utilization of silver from lead and silver residues.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know