Dynamic deorbit of small-sized space debris in near-Earth orbit in view of space-based pulse laser
Journal of Laser Applications, ISSN: 1042-346X, Vol: 34, Issue: 2
2022
- 4Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The objective of this work is to address active deorbit of small-sized space debris in the near-Earth orbit by a space-based pulse laser. A dynamic deorbit model based on perigee altitude was established during space-based laser pulse irradiating the debris. The effects of orbital eccentricity, perigee altitude, true anomaly, and action distance of the debris with the number of pulse lasers and laser powers were obtained. Furthermore, the whole deceleration process of the debris removal irradiated by a pulse laser was intuitively described, and the evolution rules of the debris movement in the whole stage of active deorbit were also demonstrated. As a result, the three-dimensional visualization scene of the debris movement and the complete period evolution images of the debris deorbit were displayed. Finally, the results of numerical computations were consistent with the outcomes of visual simulations based on the given conditions. That is, when the laser power was 500 kW and the number of pulses was 965, the purpose of debris deorbit was completed by four laser irradiations, and the semimajor axis and eccentricity of the debris reached were 9915.4 km and 0.338 at the moment. These results can provide an important reference for the integrated research on space-based pulse laser active removal and clearance evaluation of small-sized space debris.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know