Microscopic Shear Deformation Characteristics of the Lüders Front in a Metastable Austenitic Transformation-induced-plasticity Steel
ISIJ International, ISSN: 0915-1559, Vol: 63, Issue: 5, Page: 899-909
2023
- 2Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
To elucidate the mechanisms of deformation and a state of plastic stability at the front of Lüders bands during a tensile test, metastable austenitic transformation-induced plasticity (TRIP) steels with different dislocation densities and ferritic steels were characterized via macroscopic-DIC-based stress–strain investigations and scanning electron microscopy (SEM). A direct correlation between stress–strain curves and measured strain distributions in the tensile specimen indicated that the Lüders front represents a transition region from a state of plastic instability to one of stability, whereby a general rule relating the Lüders strain (∆ε) and increments in the true stress in the Lüders band (∆σ) to a lower yield stress (σ ) can be described as σ = ∆σ /∆ε irrespective of the amount of deformation-induced martensite in the band or crystal structure of the steel. The inclination angle of the Lüders front with respect to the tensile direction changed from 55° to 90° with a reduction in the measured strain ratio (−ε/ε) in the Lüders band, and the change agreed with the tendency calculated by the plasticity model, assuming the pure shear occurs under the minimum shear strain criterion. SEM observations of the sheet surface and the front cross-section in the TRIP steel showed the formation of multiple inclined ~20 μm-wide shear deformation zones that accompanied a reduction in thickness. All the observed geometrical characteristics of the Lüders front were qualitatively described by a mechanism involving minimizing the misalignment from the fixed tensile axis caused by ‘shear’ deformation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161573471&origin=inward; http://dx.doi.org/10.2355/isijinternational.isijint-2022-550; https://www.jstage.jst.go.jp/article/isijinternational/63/5/63_ISIJINT-2022-550/_article; https://dx.doi.org/10.2355/isijinternational.isijint-2022-550
Iron and Steel Institute of Japan
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know