Formation of an N-oxide metabolite following metabolism of 1-(3-chlorobenzyl)[1,2,4] triazolo[4,3-a]quinoxaline by in vitro rat liver microsomal preparations
Acta Pharmaceutica Sciencia, ISSN: 1307-2080, Vol: 60, Issue: 4, Page: 437-449
2022
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Metabolic formation of N-oxides has always been important because of their biological activity profiles. Many N-oxide derivatives today are registered on the mar-ket for their diverse clinical use. Tertiary amines and ring nitrogens are main struc-tures in drugs and xenobiotics for metabolic production of N-oxides in biological systems. Recently a new class of quinoxaline derivatives were synthesized and their anti-inflammatory activity was studied. In the present study, we studied in vitro microsomal metabolism of 1-(3-chlorobenzyl)[1,2,4]triazolo[4,3-a]quinoxaline (substrate) selected as the most active compound out of these quinoxaline derivatives using rat liver microsomes. The preliminary results from LC-MS experiments revealed that this substrate underwent N-oxidation in the presence of microsomes and co-factors.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know