Probabilities of tree topologies with temporal constraints and diversification shifts
Peer Community Journal, ISSN: 2804-3871, Vol: 1
2021
- 1Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Dating the tree of life is a task far more complicated than only determining the evolutionary relationships between species. It is therefore of interest to develop approaches apt to deal with undated phylogenetic trees. The main result of this work is a method to compute probabilities of undated phylogenetic trees under Markovian diversification models by constraining some of the divergence times to belong to given time intervals and by allowing diversification shifts on certain clades. If the diversification models considered are lineage-homogeneous, the time complexity of this computation is quadratic with the number of species of the phylogenetic tree and linear with the number of temporal constraints. The interest of this computation method is illustrated with three applications, namely, to compute the distribution of the divergence times of a tree topology with temporal constraints, to directly sample the divergence times of a tree topology, and to test for a diversification shift at a given clade.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know