Developing a finite element beam theory for nanocomposite shape-memory polymers with application to sustained release of drugs
Scientia Iranica, ISSN: 2345-3605, Vol: 24, Issue: 1, Page: 249-259
2017
- 18Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, a thermodynamically consistent constitutive model, recently proposed for nanocomposite Shape-Memory Polymers (SMPs), is used as a basis for development of SMP beam element in a finite element framework. The beam theory utilized here is the Euler-Bernoulli beam theory with its basic assumptions. Effects of different materials as well as the geometric structural parameters, e.g. reinforcement (nano/micro-particles) volume fraction, viscosity coefficients, and external loads, on the thermomechanical response of the structure are studied in this work. The beam element numerical results are compared to those of 3D finite element modeling to verify validity of the beam element formulation and the assumptions made therein. This beam element provides us with a fast and reliable tool for simulation of structures, consisting of reinforced SMP beams. As an application, the developed nanocomposite SMP beam element could be used for numerical modeling of thermomechanical response of the drugs (e.g., theophylline) coated by films of SMP nanocomposites. It is shown that the numerical results are in correspondence with those of the experiments reported for sustained release of SMP-nanocomposite based drugs.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85028763346&origin=inward; http://dx.doi.org/10.24200/sci.2017.4030; http://scientiairanica.sharif.edu/article_4030.html; http://scientiairanica.sharif.edu/article_4030_0d6888004c498ca14dacd5497c6022bf.pdf; https://dx.doi.org/10.24200/sci.2017.4030; https://scientiairanica.sharif.edu/article_4030.html
SciTech Solutions
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know