Analysis of intelligent agent operation strategy of power system scheduling based on intelligent optimization algorithm
Applied Mathematics and Nonlinear Sciences, ISSN: 2444-8656, Vol: 9, Issue: 1
2024
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
This paper first explores the basic process and characteristics of the intelligent algorithm, calculates its fitness function after setting and initializing the intelligent algorithm population, and iterates continuously to obtain a satisfactory optimal solution on the basis of the initialized stochastic solution. Then the optimization of the firefly algorithm is studied. After initializing the firefly population, the random attraction model and the probability factor are introduced to optimize the algorithm. Then, the power scheduling intelligent agent strategy is studied in depth, and the structure and operation process of the intelligent agent operation strategy is determined, as well as its application areas are studied. Finally, the effect of grid load forecasting by power dispatching intelligent agents is analyzed and compared before and after the application of intelligent agent operation strategy in the power system. In terms of grid load prediction accuracy, the actual and prediction errors are basically between 0.02-0.16, which is very close to the actual value. In terms of user satisfaction, the previous user satisfaction was basically 0.75-0.8, and the maximum satisfaction was basically increased to more than 0.9 after applying the intelligent agent operation strategy. The intelligent agent operation strategy based on an intelligent optimization algorithm can effectively dispatch the power system and improve user satisfaction.
Bibliographic Details
Walter de Gruyter GmbH
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know