Treatment of Leachate Using Up-Flow Anaerobic Sludge Blanket Reactors/Vertical Flow Subsurface Constructed Wetlands
Ecological Chemistry and Engineering S, ISSN: 1898-6196, Vol: 27, Issue: 1, Page: 129-137
2020
- 8Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The composition of local solid waste consists mainly of biodegradable waste with high moisture and organic content. After being landfilled, the waste decomposes through a series of combined physico-chemical and biological processes, resulting in the generation of landfill leachate. Unless treated properly, the leachate poses a serious threat to the environment and to public health. In this study, the use of an engineered system consisting of an up-flow anaerobic sludge blanket reactor and a vertical flow subsurface constructed wetland for the treatment of landfill leachate was investigated. The leachate obtained from a landfill facility in Aksaray, Turkey was fed into both systems and laboratory tests showed that, over the 6-week study period, the systems were able to efficiently remove chemical oxygen demand (88.6 %) and total nitrogen (80.7 %). The results of this study suggested that Typha angustifolia significantly increased the removal of total nitrogen. The higher ammonia removal occurred in the anaerobic system and also the removal efficiency increased in planted bed, it is presumed to be the result of the ammonia nitrogen uptake by the roots of the plant.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know