Mechanisms of Electron Scattering in Uniaxially Deformed Silicon Single Crystals with Radiation Defects
Latvian Journal of Physics and Technical Sciences, ISSN: 0868-8257, Vol: 56, Issue: 5, Page: 45-57
2019
- 9Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Temperature dependencies for Hall mobility of electrons for the uniaxially deformed n-Si single crystals, irradiated by the flow of electrons ω=1·10 el./cm with the energy of 12 MeV, are obtained on the basis of piezo-Hall effect measurements. From the analysis of these dependencies it follows that under the uniaxial pressure (0-0.42) GPa and (0-0.37) GPa along crystallographic directions [100] and [111], respectively, the deformation-induced increase of the Hall mobility has been observed. On the basis of the proposed theoretical model of mobility, this increase is explained by the decrease of the amplitude of a large-scale potential with an increase in the magnitude of uniaxial deformation and, accordingly, the probability of electron scattering on this potential. The slight discrepancy between the obtained experimental results and the relevant theoretical calculations at the low temperatures is due to the fact that the electron scattering on the radiation defects, created by the electron radiation, was not taken into account in the calculations. The decrease in Hall mobility of electrons along with an increase in temperature for unirradiated and irradiated silicon single crystals is explained by the growth of the probability of electron scattering on the optical phonons that are responsible for the intervalley scattering in silicon. The obtained results can be used in designing and modelling on the basis of n-Si single crystals of various electronic devices of micro- A nd nanoelectronics, which can be subject to the extreme conditions of action of the significant radiation and deformation fields.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know