PlumX Metrics
Embed PlumX Metrics

Precise Orbit Determination of the MESSENGER Spacecraft

Journal of Guidance, Control, and Dynamics, ISSN: 1533-3884, Vol: 47, Issue: 3, Page: 518-530
2024
  • 3
    Citations
  • 0
    Usage
  • 1
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The NASA MESSENGER mission explored Mercury for more than four years to investigate the properties of the planet. To safely operate in the harsh conditions around Mercury, the spacecraft was in a highly eccentric orbit with a low periapsis altitude. The radiation environment had a strong impact on the spacecraft orbit evolution because of the proximity of Mercury to the Sun. A detailed modeling of the nonconservative forces is then a key factor to enhance the precise orbit determination of the spacecraft. We present here refined models of the nonconservative forces, including thermal reradiation effects, that enabled significant improvements in the trajectory reconstruction. A crossover analysis based on the Mercury Laser Altimeter (MLA) data was carried out to cross-check the accuracy of the orbit determination results. The trajectories retrieved by using the refined spacecraft dynamical model provide reduced height misfit at crossover points, indicating a high-quality reconstruction. Our new solutions of the spacecraft orbits are then archived to be used as auxiliary information for the data analysis of other MESSENGER instruments.

Bibliographic Details

Simone Andolfo; Antonio Genova; Edoardo Del Vecchio

American Institute of Aeronautics and Astronautics (AIAA)

Engineering; Earth and Planetary Sciences; Mathematics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know