Subregional Differentiated Safety Factors Design Based on Nonprobabilistic Structural Reliability
AIAA Journal, ISSN: 1533-385X, Vol: 62, Issue: 7, Page: 2424-2432
2024
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- 1
Most Recent News
Studies from Beihang University Describe New Findings in Aerospace Research (Subregional Differentiated Safety Factors Design Based On Nonprobabilistic Structural Reliability)
2024 APR 02 (NewsRx) -- By a News Reporter-Staff News Editor at Defense & Aerospace Daily -- Current study results on Aerospace Research have been
Article Description
The structural safety factor is an essential parameter in aircraft design, representing the ratio of the design load to the operating load. Traditional design methods rely on subjective determination of safety factor values based on experience, lacking objectivity in quantifying uncertainty. However, with advancements in aircraft design technology and increasing competition in the commercial space market, new-generation hypersonic aircraft with complex load environments require a more optimal approach. Applying a uniform safety factor to each component within subregions of the aircraft leads to overly conservative results and impacts flight performance. To address this limitation, a design scheme that incorporates subregional, differentiated safety factors is necessary. This approach allows for better material utilization and ensures compliance with safety requirements. This paper utilizes reliability-based design optimization theory to consider uncertainty in structural systems. It establishes a mapping relationship between structural reliability and differentiated safety factors, providing safety under uncertainty while guaranteeing weight reduction. Additionally, this paper develops a subregional, differentiated safety factors distribution program to determine the safety factors of different subregions of the structure. Consequently, a refined subregional differentiated safety factors scheme that balances safety and economy is derived.
Bibliographic Details
American Institute of Aeronautics and Astronautics (AIAA)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know