Optic flow based state estimation for an indoor micro air vehicle
AIAA Guidance, Navigation, and Control Conference
2010
- 6Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
This work addresses the problem of indoor state estimation for autonomous flying vehicles with an optic flow approach. The paper discusses a sensor configuration using six optic flow sensors of the computer mouse type augmented by a three-axis accelerometer to estimate velocity, rotation, attitude and viewing distances. It is shown that the problem is locally observable for a moving vehicle. A Kalman filter is used to extract these states from the sensor data. The resulting approach is tested in a simulation environment evaluating the performance of three Kalman filter algorithms under various noise conditions. Finally, a prototype of the sensor hardware has been built and tested in a laboratory setup. Copyright © 2010 by M. J. Verveld.
Bibliographic Details
American Institute of Aeronautics and Astronautics (AIAA)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know