Comparatıve assessment of thermal ınjury ınduced by bıpolar electrocautery systems ın a porcıne model
Surgical Neurology International, ISSN: 2152-7806, Vol: 12, Page: 146
2021
- 4Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Background: Bipolar electrocautery systems used during neurosurgical procedures have been shown to induce thermal injury to surrounding tissue. The goal of this study was to compare the thermal injury induced by two different systems commonly used in neurosurgical procedures (Silverglide by Stryker Corporation and Spetzler-Malis by Codman Neuro), with that of a newly introduced device (TRIOwand by NICO Corporation). Methods: A farm swine underwent craniectomy and durotomy with subsequent exposure of cortical brain tissue. Electrocoagulation for the duration of 3 s was conducted with three different bipolar systems under comparable power settings. The maximal depth of thermal injury and mean area of injury in Hematoxylin and Eosin stained slides were quantified using Image J. The tissues were evaluated for vacuolization and ischemic damage. One-way ANOVA followed by post hoc Tukey test was utilized for statistical analysis. Alpha level was set at 0.05. Results: TRIOwand lesions showed less depth of injury when compared to both Spetzler-Malis (P < 0.001) and Silverglide lesions (P = 0.048). Silverglide lesions showed significantly less depth of injury when compared to Spetzler-Malis lesions (P < 0.001). The injury area induced by the TRIOwand was significantly less than that of Spetzler-Malis (P < 0.001) and Silverglide systems (P < 0.001). Ischemic changes and vacuolization were seen in all three groups. Conclusion: Thermal damage is induced to varying extents by all bipolar systems. In this porcine model and under the conditions tested, bipolar cauterization with the TRIOwand resulted in less depth and decreased mean area of injury. Further studies are needed to characterize the injury caused by different bipolar systems with other settings and under surgical conditions in humans.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85104740992&origin=inward; http://dx.doi.org/10.25259/sni_770_2020; http://www.ncbi.nlm.nih.gov/pubmed/33948316; http://surgicalneurologyint.com/surgicalint-articles/comparative-assessment-of-thermal-injury-induced-by-bipolar-electrocautery-systems-in-a-porcine-model/; https://dx.doi.org/10.25259/sni_770_2020; https://surgicalneurologyint.com/surgicalint-articles/comparative-assessment-of-thermal-injury-induced-by-bipolar-electrocautery-systems-in-a-porcine-model/
Scientific Scholar
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know