An evolution model with uncountably many alleles
Alea (Rio de Janeiro), ISSN: 1980-0436, Vol: 20, Issue: 2, Page: 1041-1075
2023
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We study a class of evolution models, where the breeding process involves an arbitrary exchangeable process, allowing for mutations to appear. The population size n is fixed, hence after breeding, selection is applied. Individuals are characterized by their genome, picked inside a set X (which may be uncountable), and there is a fitness associated to each genome. Being less fit implies a higher chance of being discarded in the selection process. The stationary distribution of the process can be described and studied. We are interested in the asymptotic behavior of this stationary distribution as n goes to infinity. Choosing a parameter λ?> 0 to tune the scaling of the fitness when n grows, we prove limiting theorems both for the case when the breeding process does not depend on n, and for the case when it is given by a Dirichlet process prior. In both cases, the limit exhibits phase transitions depending on the parameter λ.
Bibliographic Details
Institute for Applied and Pure Mathematics (IMPA)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know